资源类型

期刊论文 453

会议视频 8

年份

2024 1

2023 30

2022 39

2021 48

2020 28

2019 45

2018 28

2017 30

2016 18

2015 22

2014 20

2013 27

2012 13

2011 23

2010 12

2009 21

2008 10

2007 13

2006 3

2005 2

展开 ︾

关键词

燃料电池 7

固体氧化物燃料电池 6

干细胞 3

2035 2

SOFC 2

临床试验 2

低温铝电解 2

催化剂 2

制氢 2

医学 2

双极板 2

可再生能源 2

固体氧化物电解池 2

太阳电池 2

嵌合抗原受体 2

氢燃料电池 2

氢能 2

组织工程 2

铝电解 2

展开 ︾

检索范围:

排序: 展示方式:

Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis

Ze Sun,Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu

《化学科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 522-531 doi: 10.1007/s11705-015-1539-x

摘要: Electric field is the energy foundation of the electrolysis process and the source of the multiphysical fields in a magnesium electrolysis cell. In this study, a three-dimensional numerical model was developed and used to calculate electric field at the steady state through the finite element analysis. Based on the simulation of the electric field, the operational and structural parameters, such as the current intensity, anode thickness, cathode thickness, and anode-cathode distance (ACD), were investigated to obtain the minimum cell voltage. The optimization is to obtain the minimum resistance voltage which has a significant effect on the energy consumption in the magnesium electrolysis process. The results indicate that the effect of the current intensity on the voltage could be ignored and the effect of the ACD is obvious. Moreover, there is a linear decrease between the voltage and the thicknesses of the anode and cathode; and the anode-cathode working height also has a significant effect on the voltage.

关键词: finite element method     magnesium electrolysis cell     electric field    

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1084-1095 doi: 10.1007/s11783-015-0805-y

摘要: Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L ?h for Cu(II) at an initial concentration of 50 mg?L and 5.3±0.4 mg?L h for Co(II) at an initial 40 mg?L were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L ?h ) and Co(II) (6.4 mg?L ?h ) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol COD). Phylogenetic analysis on the biocathodes indicates dominantly accounted for 67.9% of the total reads, followed by (14.0%), (6.1%), (2.5%), (1.4%), and (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

关键词: biocathode     microbial electrolysis cell     microbial fuel cell     Cu(II) removal     Co(II) removal    

A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysiscell condition

Weichao Yue, Xiaofang Chen, Weihua Gui, Yongfang Xie, Hongliang Zhang

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 414-428 doi: 10.1007/s11705-017-1663-x

摘要: Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accurate RCA of abnormal aluminum electrolysis cell condition is the precondition of improving current efficiency. RCA of abnormal condition is a complex work of multi-source knowledge fusion, which is difficult to ensure the RCA accuracy of abnormal cell condition because of dwindling and frequent flow of experienced technicians. In view of this, a method based on Fuzzy-Bayesian network to construct multi-source knowledge solidification reasoning model is proposed. The method can effectively fuse and solidify the knowledge, which is used to analyze the cause of abnormal condition by technicians providing a clear and intuitive framework to this complex task, and also achieve the result of root cause automatically. The proposed method was verified under 20 sets of abnormal cell conditions, and implements root cause analysis by finding the abnormal state of root node, which has a maximum posterior probability by Bayesian diagnosis reasoning. The accuracy of the test results is up to 95%, which shows that the knowledge reasoning feasibility for RCA of aluminum electrolysis cell.

关键词: abnormal aluminum electrolysis cell condition     Fuzzy-Bayesian network     multi-source knowledge solidification and reasoning     root cause analysis    

Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-productioncell and Fenton process

Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1191-7

摘要: MEDCC combined with Fenton process was developed to treat real pesticide wastewater. Pesticide removal was attributable to desalination in the MEDCC. High COD removal was attributable to organic distributions in different chambers. The combination of the microbial electrolysis desalination and chemical-production cell (MEDCC) and Fenton process for the pesticide wastewater treatment was investigate in this study. Real wastewater with several toxic pesticides, 1633 mg/L COD, and 200 in chromaticity was used for the investigation. Results showed that desalination in the desalination chamber of MEDCC reached 78%. Organics with low molecular weights in the desalination chamber could be removed from the desalination chamber, resulting in 28% and 23% of the total COD in the acid-production and cathode chambers, respectively. The desalination in the desalination chamber and organic transfer contributed to removal of pesticides (e.g., triadimefon), which could not be removed with other methods, and of the organics with low molecular weights. The COD in the effluent of the MEDCC combined the Fenton process was much lower than that in the perixo-coagulaiton process (<150 vs. 555 mg/L). The combined method consumed much less energy and acid for the pH adjustment than that the Fenton.

关键词: Pesticide wastewater     COD removal     Microbial electrolysis desalination and chemical-production cell     Energy consumption     Fenton oxidation    

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupledwith iron-carbon micro-electrolysis

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1409-3

摘要:

• MFC promoted the nitrogen removal of anammox with Fe-C micro-electrolysis.

关键词: Waste tire     MFCs     Micro-electrolysis     Anammox     Feammox    

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 624-630 doi: 10.1007/s11783-013-0584-2

摘要: A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H -full atmosphere to enrich H -utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L to 0.5 mol·L and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m ·m ·d with a current density of 951.6 A·m was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.

关键词: microbial electrolysis cell (MEC)     biocathode     hydrogen production     bicarbonate     cathode potential    

Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic solutions

《环境科学与工程前沿(英文)》 2023年 第17卷 第9期 doi: 10.1007/s11783-023-1708-y

摘要:

● Appreciable H2O2 production rate was achieved in MRCs utilizing NH4HCO3 solutions.

关键词: Microbial reverse-electrodialysis cell     Hydrogen peroxide production     Ammonium bicarbonate     Electrolysis cell     Optimization    

电化学氢-水转化系统中电解水和氢燃料电池催化剂的设计 Review

彭立山, 魏子栋

《工程(英文)》 2020年 第6卷 第6期   页码 653-679 doi: 10.1016/j.eng.2019.07.028

摘要:

在当前的能源需求和气候变化的背景下,可持续能源系统的研究已取得实质性进展。氢-水电化学转化是一种理想的、无化石原料使用的可持续能源系统。然而,该能源系统中两种核心技术的能量转换,即电解水和燃料电池,仍有很大的改进空间。本文分析了氢-水能源系统中电解水和燃料电池的能量耗散,并讨论了在催化剂表面发生的涉及氢-氧反应的主要障碍。通过反应性中间体与表观催化性能之间的标度关系,本文总结了催化活性趋势的框架,为高活性氢-氧反应电催化剂的设计提供了思路。文中介绍了一系列基于催化性能的结构工程方法(包括纳米结构化、晶面工程、相工程、非晶化、缺陷工程、元素掺杂、界面工程和合金化)及其应用,着重介绍从以往的理论和实验研究中得到的合理指导,并概述了电化学氢-水转化系统中的关键科学问题,提出了开发具有高能量转化率的催化剂的研究方向。

关键词: 可再生能源系统     氢–水电化学循环     电催化     电催化剂工程     结构设计     水电解     燃料电池    

基于子带瞬时能量谱的铝电解槽电压槽况敏感频域分段方法 Article

曾朝晖, 桂卫华, 陈晓方, 谢永芳, 张红亮, 孙玉波

《工程(英文)》 2021年 第7卷 第9期   页码 1282-1292 doi: 10.1016/j.eng.2020.11.012

摘要:

槽电压是广泛使用且可在线测量的铝电解槽信号,多种电解槽槽况分析和控制用参数由槽电压计算得到。槽电压频域分段是设计获取这些参数的数字滤波器通带的依据。在对槽电压定性分析的基础上,本文提出子带瞬时能量谱(sub-band Instantaneous energy spectrum, SIEP),并用其对多种槽况下槽电压的频域特性进行定量表示,最终给出了槽电压槽况敏感频域分段方法。该频域分段方法将槽电压有效频段划分为低频信号区[0, 0.001] Hz和低频噪声区[0.001, 0.050] Hz;将低频噪声区再细分为[0.001, 0.010] Hz的铝液异常波动频段和[0.01, 0.05] Hz 的次低频噪声频段。与基于经验模态分解的瞬时能量谱比较,SIEP能更精细地表示槽电压有效频段内任意频段的能量随时间变化规律。该槽电压频域分段方法对槽况更敏感,可更细致地获取在线槽况信息,为工业电解槽槽况监测和控制决策提供更可靠、准确的在线依据。

关键词: 子带瞬时能量谱     槽况敏感频段     频域分段     铝液异常波动     铝电解    

固体氧化物电解池共电解H2O/CO2研究进展

范慧,宋世栋,韩敏芳

《中国工程科学》 2013年 第15卷 第2期   页码 107-112

摘要:

固体氧化物电解池(SOEC)作为一种新的能源利用方式,可以将电能转化为化学能,具有高效、洁净、环保等优点。本文介绍了固体氧化物电解池的结构特点及其用于H2O/CO2的共电解制备H2和CO的工作原理,综述了固体氧化物电解池的组成形式,以及单片电解池和电解池堆用于H2O/CO2共电解反应的国内外研究进展,并阐述了提高固体氧化物电解池共电解效率所亟需解决的问题。

关键词: 固体氧化物电解池     H2O/CO2共电解     合成气     电解效率     水电解    

Synthesis and characterization of magnesium hydroxide by batch reaction crystallization

Xingfu SONG, Shuying SUN, Dengke ZHANG, Jin WANG, Jianguo YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 416-421 doi: 10.1007/s11705-011-1125-9

摘要: Magnesium hydroxide with high purity and uniform particle size distribution was synthesized by the direct precipitation method using MgCl and NaOH as reactive materials and NaCl as additive to improve the crystallization behavior of the product. The particle size distribution, crystal phase, morphology, and surface area of magnesium hydroxide were characterized by Malvern laser particle size analyzer, X-ray diffraction (XRD), scanning electron microscope (SEM) and Branauer-Emmett-Teller (BET) method, respectively. The purity of products was analyzed by the chemical method. The effects of synthesis conditions on the particle size distribution and water content (filtration cake) of magnesium hydroxide were investigated. The results indicated that feeding mode and rate, and reaction temperature had important effects on water content and the particle size distribution of the product, and sodium chloride improved the crystallization behavior of magnesium hydroxide. The ball-like magnesium hydroxides with the particle size distribution of 6.0–30.0 μm and purity higher than 99.0% were obtained. This simple and mild synthesis method was promising to be scaled up for the industrial production of magnesium hydroxide.

关键词: magnesium hydroxide     direct precipitation method     industrial crystallization     particle size distribution    

Local arc discharge mechanism and requirements of power supply in micro-arc oxidation of magnesium alloy

Ming CHEN, Yuezhou MA, Yuan HAO,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 98-105 doi: 10.1007/s11465-009-0088-8

摘要: To study the requirements of the power supply in micro-arc oxidation (MAO) of magnesium alloy, many experiments were performed under the DC, unipolar, and ambipolar pulse output modes. Based on the experimental results and electric arc theory, the separate local arc discharge mechanism was put forward. It is considered that magnesium MAO process consists of three stages including anodic oxidation, micro-arc oxidation, and large-arc discharge in turn with increasing source voltage. The MAO film is composed of metal oxides that resulted from numerous discrete local arc discharges, which accumulate the non-equilibrium structure after undergoing sudden heating and cooling cycles. Separate local arc discharge is caused by the process in which the oxygen-based gas is ionized in the conduct channel bearing electric field intensity, changed from insulator to conductor that presents sharp negative resistance effect, and produced partially high temperature to ignite locally metal oxidation. The local arc discharge model is described as four courses: gas created from electrolysis, arc discharge, metals oxidization, and cooling and shrinking of oxides. The purpose of pulse supply is to inhibit the large-arc discharge by intervening proper cooling time, which cannot be actualized by a unipolar pulse mode because of the strong capacitive load characteristics but can be reached by an ambipolar pulse supply because the negative pulse period acts as cooling time. Using a discharge loop to remove the influence of load capacitive, a new type of pulse power supply for MAO is developed, so that the large-arc problem is resolved effectively, the film-forming efficiency is improved, and the pollution of the film and electrolyte caused by negative voltage is avoided.

关键词: micro-arc oxidation     local arc discharge     pulse power supply     magnesium alloy    

Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1047-1057 doi: 10.1007/s11709-021-0755-3

摘要: Magnesium phosphate cement (MPC) received increased attention in recent years, but MPC-based concrete is rarely reported. The micro-steel fibers (MSF) were added to MPC-based concrete to enhance its ductility due to the high brittleness in tensile and flexural strength properties of MPC. This paper investigates the effect of MSF volume fraction on the mechanical properties of a new pattern of MPC-based concrete. The temperature development curve, fluidity, cubic compressive strength, modulus of elastic, axial compressive strength, and four-point flexural strength were experimentally studied with 192 specimens, and a scanning electron microscopy (SEM) test was carried out after the specimens were failed. Based on the test results, the correlations between the cubic compressive strength and curing age, the axial and cubic compressive strength of MPC-based concrete were proposed. The results showed that with the increase of MSF volume fraction, the fluidity of fresh MPC-based concrete decreased gradually. MSF had no apparent influence on the compressive strength, while it enhanced the four-point flexural strength of MPC-based concrete. The four-point flexural strength of specimens with MSF volume fraction from 0.25% to 0.75% were 12.3%, 21.1%, 24.6% higher than that of the specimens without MSF, respectively.

关键词: magnesium phosphate cement-based concrete     micro-steel fibers     four-point flexural strength     compressive strength    

Green process to recover magnesium chloride from residue solution of potassium chloride production plant

WANG Lin, HE Yunliang, WANG Yanfei, BAO Ying, WANG Jingkang

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 385-389 doi: 10.1007/s11705-008-0079-z

摘要: The green process to recover magnesium chloride from the residue solution of a potassium chloride production plant, which comes from the leach solution of a potash mine in Laos, is designed and optimized. The residue solution contains magnesium chloride above 25 wt-%, potassium chloride and sodium chloride together below 5 wt-% and a few other ions such as Br, SO and Ca. The recovery process contains two steps: the previous impurity removal operation and the two-stage evaporation-cooling crystallization procedure to produce magnesium chloride. The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt. The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production. The produced magnesium chloride is up to industrial criteria.

关键词: industrial production     chemical industrial     produced magnesium     chloride production     impurity carnallite    

生物质发电、制氢以及低温电化学研究进展综述 Review

刘伟, 刘聪敏, Parikshit Gogoi, 邓渝林

《工程(英文)》 2020年 第6卷 第12期   页码 1351-1363 doi: 10.1016/j.eng.2020.02.021

摘要:

生物质是指储存化学能和太阳能的植物或动物材料,传统上被广泛应用于产热和各种工业过程。生物质中含有大量的氢元素,是制氢的极好原材料。因此,生物质是发电或制氢的可持续来源。虽然生物质发电厂和生物质转化厂已经商业化,但如何开发更有效、更经济的技术来进一步提高生物质转化效率和减少这些电厂对环境的影响,仍然是一项艰巨的挑战。利用生物质液体燃料电池技术将生物质直接转化为电能和在低温下通过电解将生物质转化为氢气的技术是近年来人们关注的两个新兴的研究领域。本文首先简要介绍了生物质转化为电能和氢能的传统技术,然后详细介绍了生物质液体燃料电池(FBFC)和生物质电解制氢(BEHP)的最新研究进展,并讨论了这两个领域进一步发展将面临的挑战。

关键词: 生物质     液流电池     燃料电池     制氢     电解    

标题 作者 时间 类型 操作

Effects of operational and structural parameters on cell voltage of industrial magnesium electrolysis

Ze Sun,Chenglin Liu,Guimin Lu,Xingfu Song,Jianguo Yu

期刊论文

Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced

Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG

期刊论文

A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysiscell condition

Weichao Yue, Xiaofang Chen, Weihua Gui, Yongfang Xie, Hongliang Zhang

期刊论文

Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-productioncell and Fenton process

Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang

期刊论文

Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupledwith iron-carbon micro-electrolysis

期刊论文

Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell

Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG

期刊论文

Efficient production of hydrogen peroxide in microbial reverse-electrodialysis cells coupled with thermolytic solutions

期刊论文

电化学氢-水转化系统中电解水和氢燃料电池催化剂的设计

彭立山, 魏子栋

期刊论文

基于子带瞬时能量谱的铝电解槽电压槽况敏感频域分段方法

曾朝晖, 桂卫华, 陈晓方, 谢永芳, 张红亮, 孙玉波

期刊论文

固体氧化物电解池共电解H2O/CO2研究进展

范慧,宋世栋,韩敏芳

期刊论文

Synthesis and characterization of magnesium hydroxide by batch reaction crystallization

Xingfu SONG, Shuying SUN, Dengke ZHANG, Jin WANG, Jianguo YU

期刊论文

Local arc discharge mechanism and requirements of power supply in micro-arc oxidation of magnesium alloy

Ming CHEN, Yuezhou MA, Yuan HAO,

期刊论文

Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate

期刊论文

Green process to recover magnesium chloride from residue solution of potassium chloride production plant

WANG Lin, HE Yunliang, WANG Yanfei, BAO Ying, WANG Jingkang

期刊论文

生物质发电、制氢以及低温电化学研究进展综述

刘伟, 刘聪敏, Parikshit Gogoi, 邓渝林

期刊论文